

Geruchsgutachten (Immissionsprognose)

ZUM

Bebauungsplan 138 der Stadt Haan im Ortsteil Gruiten

Auftraggeber: Projektbau Düsselthal GmbH Pastor-Vömel-Straße 20 b 42781 Haan

Tel.: (02104) 80 89 480 Fax: (02104) 80 34 48 ausgeführt durch: Ingenieurbüro Richters & Hüls Erhardstraße 9 48683 Ahaus

Tel.: (02561) 43003 Fax: (02561) 43005

Gutachten Nr. G 060701

INHALTSVERZEICHNIS

1.	. AUSGANGSSITUATION	2
2.	. AUSBREITUNGSRECHNUNG	3
	2.1 Lageskizze	4
3.	. AUSGANGSDATEN FÜR DIE IMMISSIONSPROGNOSE	5
	3.1. Emissionsquellen Hof Demmer	5
	3.2. Wetterdaten	5
	3.3. Ergebnisse	
4.	ZUSAMMENFASSUNG	7
	Anhang	
	Daten der statistischen Auswertung	
	Zentrale Modellparameter A	1
	Liste der Quellen A	1
	Daten des Windfeldes A	1
	Lage der Quellen und Aufpunkte	12
	Emissions datan Tierhaltung	13

1. Ausgangssituation

Die Projektbau Düsselthal GmbH plant im Ortsteil Gruiten der Stadt Haan den Bebauungsplan Nr. 138.

Nördlich des Plangebietes ist in einer Entfernung von ca. 210 m der Vollerwerbsbetrieb Demmer, Vockenhaus 1, 42781 Haan ansässig. Auf diesem Betrieb ist eine Haltung von 11.500 Legehennen genehmigt.

Im Vorfeld soll die Frage geklärt werden, ob unter Berücksichtigung der lokalen Windhäufigkeitsverteilung im Plangebiet erhebliche Belästigungen durch von diesem Betrieb ausgehende Gerüche zu erwarten sind.

Eine weitere Vorbelastung ist nicht gegeben.

Im Sinne des Immissionsschutzrechtes besteht eine erhebliche Belästigung, wenn an Wohnhäusern in Wohn- und MI-Gebieten Gerüche in mehr als 10 % der Jahresstunden, in GE- und GI-Gebieten in mehr als 15 % der Jahresstunden wahrnehmbar sind.

Das Ingenieurbüro Richters & Hüls wurde mit der Durchführung von Immissionssimulationen und der Erstellung eines Geruchsgutachtens beauftragt.

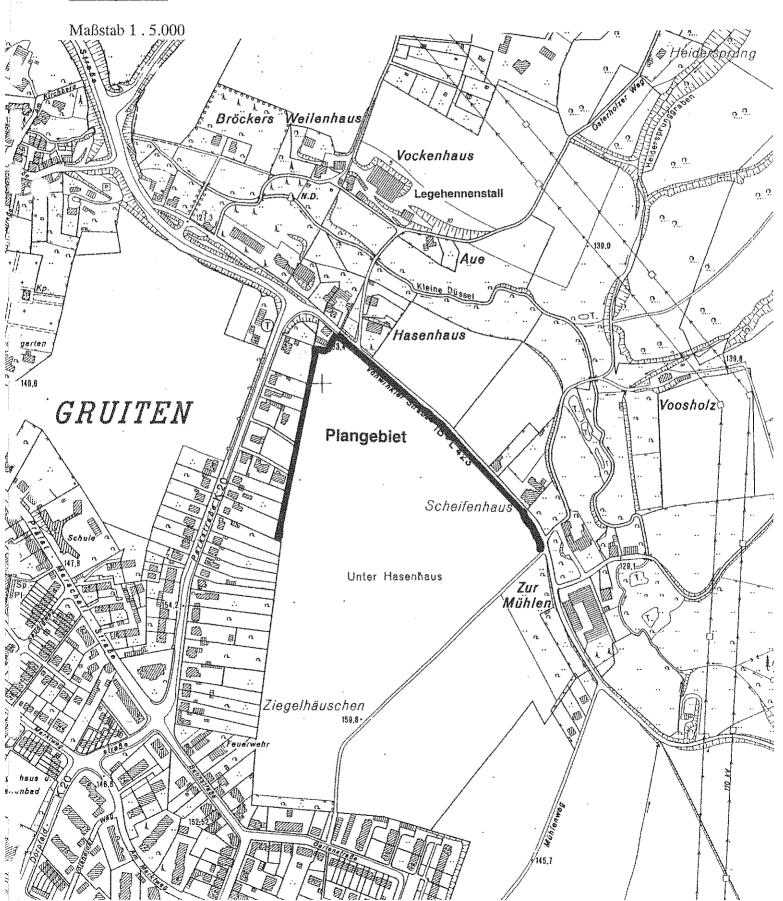
2. Ausbreitungsrechnung

Die Ausbreitungsrechnung für Geruchsstoffe erfolgt nach dem modifizierten Gauß-Modell der TA Luft, der sogenannten Faktor-10-Methode. Hierbei wird bestimmt, wie häufig der um den Faktor 10 überhöhte TA Luft-Mittelwert der Geruchsstoffkonzentration einen kritischen Wert überschreitet. Das Verfahren beinhaltet eine pauschale Zeitbewertung, so dass das Ergebnis für jeden Aufpunkt zeigt, in welchem Anteil der Jahresstunden eine Überschreitung der vorgegebenen Konzentration von 1 GE/m³ zu erwarten ist.

Das Rechenmodell benötigt als Eingangsgröße neben der standortbezogenen meteorologischen Ausbreitungsklassenstatistik (Wetterdaten) die Geruchsstoffströme und Abluftmengen der Quellen, zudem deren räumliche Koordinaten und gegebenenfalls zur Ermittlung der Abgasfahnenüberhöhung die Temperatur der Abgase.

Die Parameter des Ausbreitungsmodells wurden für Quellentfernungen über 100 m validiert. Für den Nahbereich der Quellen unter 100 m sind die Berechnungsergebnisse als Anhaltswerte zu interpretieren.

Nach Punkt 4.4.3 GIRL gilt:


Die Beurteilungsflächen sind quadratische Teilflächen des Beurteilungsgebietes, deren Seitenlänge bei weitgehend homogener Geruchsbelastung i. d. R. 250 m beträgt. Eine Verkleinerung der Beurteilungsfläche soll gewählt werden, wenn außergewöhnlich ungleichmäßig verteilte Geruchsimmissionen auf Teilen von Beurteilungsflächen zu erwarten sind, so dass sie mit den Vorgaben nach Satz 1 auch nicht annähernd zutreffend erfasst werden können.

Eine inhomogene Verteilung ist namentlich im Nahbereich von Emissionsquellen zu erwarten. Daher werden in diesem Fall verkleinerte Beurteilungsflächen von 100 m Seitenlänge gewählt.

Das Raster wird so gelegt, dass das Beurteilungsgebiet optimal erfasst wird.

Die Berechnungen erfolgen mit dem Immissionssimulationsprogramm P&K-Odor 2.0 Modell TA Luft.

2.1 Lageskizze

3. Ausgangsdaten für die Immissionsprognose

Die Großvieheinheiten werden über die Gleichsetzung von 500 kg Lebendgewicht mit einer Großvieheinheit ermittelt (vgl. VDI-Richtlinie 3472).

Die Lüftungsraten und Geruchsemissionen werden angesetzt nach KTBL-Schrift Nr. 333 (Oldenburg: Geruchs- und Ammoniak-Emissionen aus der Tierhaltung).

3.1. Emissionsquellen Hof Demmer

Legehennenstall

Großvieheinheiten: 11.500 Legehennenplätze/330 Plätze/GV

= 34,849 GV

Geruchsstoffstrom $34,849 \text{ GV} \times 50 \text{ GE x s}^{-1} \times \text{GV}^{-1} \times 3600 \times 10^{-6}$

= 6.273 MGE/h

Lüftung $34,849 \text{ GV} \times 1317 \text{ m}^3/(\text{s*GV}) \times 3600^{-1}$

 $= 12,75 \text{ m}^3/\text{s}$

Lüftung über vier giebelseitige Abluftschächte

Emissionshöhe 8,7 m

3.2. Wetterdaten

Den Berechnungen liegen die Wetterdaten der Station Düsseldorf des Deutschen Wetterdienstes zugrunde, Zeitraum 1981 - 1990. Die Windmessung erfolgte in einer Höhe von 10,2 m über Grund.

3.3. Ergebnisse

Auf den folgenden Seiten sind die Berechnungsergebnisse in Form von Flächenkennwerten im Maßstab 1:5.000 dargestellt.

Zur Ermittlung des Flächenkennwertes nach der Geruchsimmissionsrichtlinie (GIRL) wird über jede Beurteilungsfläche von 100 m Seitenlänge ein Raster mit 50 m Seitenlänge gelegt. Die Immissionshöhe beträgt für alle Aufpunkte 2 m.

Aus den Schnittstellen der Rasterlinien resultieren neun Aufpunkte. Jeder Rastereckpunkt wird als Immissionspunkt einer Ausbreitungsrechnung unterworfen. Der Flächenkennwert errechnet sich als arithmetisches Mittel aus den Wahrnehmungshäufigkeiten der auf diese Weise erhaltenen neun Aufpunkte. (Einzelwerte Aufpunkte siehe Anhang).

3.4.1. Flächenkennwerte

					Maßstab	1:5.000		//		\\
D.						8		2.2.	0	
	Co Valle	0.01	0.01	0.01	0.02	\$\$\$.	1.6	0.01 °9	0.01	
		0.01	0.01	Ø.02	0.04	0.05	0.03	0.02	ð.o2	The object of th
TO COM		0.01	0.02	Brändens	Wal 0:07 030	0.13	0.10 150 US	0.05	0.02	
		0.01	0 (0)	0.02	W.Q.05	0.18	0.11	0.04	0.02	
		0.01	0.02	0.03	0.05	0.06	Aug 0.05	0.02	0.01	
# H H	ndergarten	" f	0.02	0.02		Hasen 0.03	naus 0.02	0.01	001	1199
		$GR_{.0}UI$	TEM	1 62 1 63	0.02	0.02	0.01	0.0	oloo	loosho/z
		0.01	0.01	grain .	0.01	0.01 _S	heitenhaus		0.00	
	ISS PIPE	9.00	0.00	0.01	0.01 Ur	ler H 0.94 nhau	1 /	aloa Zur ühlen	6.06	
		0.00	0.000	0.00	0.00	0.00	0.00	0.00	0.00	
(A) *					gelhäuschei 159,8 //		/			· · · · · · · · · · · · · · · · · · ·

4. Zusammenfassung

Die Projektbau Düsselthal GmbH plant im Ortsteil Gruiten der Stadt Haan den Bebauungsplan Nr. 138.

Nördlich des Plangebietes ist in einer Entfernung von rund 200 m der Vollerwerbsbetrieb Demmer, Vockenhaus 1, 42781 Haan ansässig. Auf diesem Betrieb ist eine Haltung von 11.500 Legehennen in einem Kotbunkerstall genehmigt.

Es war zu untersuchen, wie häufig im Plangebiet mit Gerüchen zu rechnen ist, die vom genannten landwirtschaftlichen Betrieb ausgehen.

Hierzu wurden die Wahrnehmungshäufigkeiten für Gerüche nach dem Faktor-10-Modell der TA Luft bestimmt (Zählschwelle für Immissionen 1 GE/m³). Die Flächenbewertung erfolgte nach den Vorgaben der Geruchsimmissionsrichtlinie anhand von Beurteilungsflächen mit 100 m Seitenlänge.

Die Geruchsimmissionsrichtlinie gibt folgende Immissionswerte zur Beurteilung vor:

für Wohn- und MI-Gebiete IW = 0,10 für GI- und GE-Gebiete IW = 0,15

Der maximale Immissionswert tritt im nördlichen Teil des Plangebietes auf und liegt bei 0,03. Der Betrieb Demmer stellt demnach kein Geruchsbelästigungspotential für das Bebauungsplangebiet dar. Umgekehrt steht das geplante Baugebiet nach der Geruchsimmissionsrichtlinie (GIRL) auch einer erheblichen Erweiterung der Tierhaltung auf dem Hof Demmer nicht im Wege.

Die vorhandenen 11.500 Legehennenplätze stellen 34,849 Großvieheinheiten dar. Bei zu vergebenden 75 Bewertungspunkten liegt der Mindestabstand nach der VDI Richtlinie 3472 bei 205 m.

Die dem Stall nächstgelegene Ecke des Plangebietes ist rund 210 m entfernt. Somit wird auch der Mindestabstand nach VDI Richtlinie 3472 eingehalten.

Diese Immissionsprognose wurde von den Unterzeichnern nach bestem Wissen und Gewissen unter Verwendung der im Text angegebenen Unterlagen erstellt.

48683 Ahaus, den 12. Juli 2001

Richters & Hüls Büro für Abfallwirtschaft und Immissionsschutz

(Dipl.-Ing. W. Richters)

U. Kolley)

Anhang

Daten der statistischen Auswertung

Zentrale Modellparameter

Name der Parameterdatei HAAN2 Geruchsmodell nach Faktor-10-Methode

Varianzfaktor 10.00

Ausbreitungsklasse: ALLE

Windgeschwindigkeitsklasse: ALLE

Windrichtungsklasse: ALLE Geruchsschwelle 1.00 GE/m³ Mit Subfahnen rechnen: Ja

Liste der Quellen

Quelle	Stärke	X	Y	Z	Temp	Volumen
	[MGE/h]	[m]	[m]	[m]	[°C]	[m ³ /s]
Kamin 1	1.568	-6	-6	8.7	24	3.19
Kamin 2	1.568	-2	-2	8.7	24	3.19
Kamin 3	1.568	2	2	8.7	24	3.19
Kamin 4	1.568	6	6	8.7	24	3.19

Daten des Windfeldes

AKS Datei C:\ODEUR\DATEI\WETTER\DUESSEL.aks Anemometerhöhe [m] 10.20

Summe der Ereignisse 99973

Unbekannte Klasse 0

Umlaufende Winde 0

Calmen 0

Relevanter Ausschnitt 99973

	· · · · · · · · · · · · · · · · · · ·						ļ	age d	er Auf	punkt	e und	Quella	n.					
	0.5 -																	
	0.4																	
		4	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	0.3	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
		35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51
	0.2	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68
-		69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85
	0.1	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100	101	102
		103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119
	0.0	120	121	122	123	124	125	126	127	128	100	130	131	132	133	134	135	136
] #103		137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153
Y-Koordinate [m] *103	-0.1	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170
ordina	***************************************	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187
Y-Ko	-0.2	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204
		205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221
	-0.3	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238
		239	240	241	242	243	244	245	246	247	2 4 8	249	250	251	252	253	254	255
	-0.4 -	256	257	258	259	260	261	262	263	264	265	266	267	268	269	270	271	272
		273	274	275	276	277	278	279	280	281	282	283	284	285	286	287	288	289
	-0.5 -	290	291	292	293	294	295	296	297	298	299	300	301	302	303	304	305	306
		307	308	309	310	311	312	313	314	315	316	317	318	319	320	321	322	323
	-0.6	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340
	_	341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357
	-0.7																	
	-0.8							<u> </u>		1,				.1				-
		-450 	-400	-350 	-300	-250	-200		-100 <u>X-Koo</u> i		0 <u>e [m]</u>	50	100	150	200	250	300	350

Liste der Aufpunkte und Berechnungsergebnisse in Prozent der Jahresstunden pro Aufpunkt

Aufpunkt	x [m]	y [m]	Häufigkeit
1	-450	350	0.515
2	-400	350	0.578
3	-350	350	0.721
4	-300	350	0.881
5	-250	350	1.012
6	-200	350	1.182
7	-150	350	1.351
8	-100	350	1.385
9	-50	350	1.282
10	0	350	1.129
11	50	350	0.949
12	100	350	0.823
13	150	350	0.736
14	200	350	0.689
15	250	350	0.636
16	300	350	0.629
17	350	350	0.560
18	-450	300	0.616
19	-400	300	0.773
20	-350	300	0.935
21	-300	300	1.037
22	-250	300	1.195
23	-200	300	1.383
24	-150	300	1.564
25	-100	300	1.952
26	-50	300	1.868
27	0	300	1.636
28	50	300	1.302
29	100	300	1.098
30	150	300	0.949
31	200	300	0.925
32	250	300	0.918
33	300	300	0.885
34	350	300	0.813
35	-450	250	0.763
36	-400	250	0.996
37	-350	250	1.145
38	-300	250	1.255

Aufpunkt	x [m]	y [m]	Häufigkeit
79	50	150	6.407
80	100	150	5.609
81	150	150	4.365
82	200	150	3.249
83	250	150	2.537
84	300	150	1.859
85	350	150	1.446
86	-450	100	0.807
87	-400	100	1.059
88	-350	100	1.310
89 ⁻	-300	100	1.617
90	-250	100	1.891
91	-200	100	2.032
92	-150	100	3.110
93	-100	100	6.315
94	-50	100	14.720
95	0	100	14.060
96	50	100	11.660
97	100	100	10.870
98	150	100	7.530
99	200	100	3.917
100	250	100	2.820
101	300	100	1.930
102	350	100	1.372
103	-450	50	0.764
104	-400	50	0.985
105	-350	50	1.148
106	-300	50	1.428
107	-250	50	1.618
108	-200	50	1.952
109	-150	50	2.611
110	-100	50	4.322
111	-50	50	12.010
112	0	50	18.080
113	50	50	19.670
114	100	50	15.770
115	150	50	8.998
116	200	50	4.609
117	250	50	2.649
118	300	50	1.680

Aufpunkt	x [m]	y [m]	Häufigkeit
119	350	50	1.165
120	-450	0	0.710
121	-400	0	0.885
122	-350	0	1.049
123	-300	0	1.325
124	-250	0	1.411
125	-200	0	1.788
126	-150	0	2.408
127	-100	0	3.587
128	-50	0	4.383
129	0	0	0.000
130	50	0	15.340
131	100	0	12.270
132	150	0	7.514
133	200	0	3.905
134	250	0	2.181
135	300	0	1.435
136	350	0	1.000
137	-450	-50	0.698
138	-400	-50	0.938
139	-350	-50	1.055
140	-300	-50	1.345
141	-250	-50	1.616
142	-200	-50	2,149
143	-150	-50	3.357
144	-100	-50	5.654
145	-50	-50	8.469
146	0	-50	7.672
147	50	-50	8.213
148	100	-50	7.618
149	150	-50	5.265
150	200	-50	3.072
151	250	-50	1.870
152	300	-50	1.237
153	350	-50	0.888
154	-450	-100	0.709
155	-400	-100	0.942
156	-350	-100	1.191
157	-300	-100	1.575
158	-250	-100	1.999

Aufpunkt		y [m]	Häufigkeit
159	-200	-100	2.394
160	-150	-100	3.869
161	-100	-100	5.298
162	-50	-100	6.779
163	0	-100	6.608
164	50	-100	5.472
165	100	-100	4.579
166	150	-100	3.476
167	200	-100	2.112
168	250	-100	1.570
169	300	-100	1.117
170	350	-100	0.833
171	-450	-150	0.753
172	-400	-150	1.024
173	-350	-150	1.357
174	-300	-150	1.638
175	-250	-150	2.225
176	-200	-150	2.453
177	-150	-150	3.114
178	-100	-150	4.085
179	-50	-150	4.760
180	0	-150	4.608
181	50	-150	3.578
182	100	-150	2.763
183	150	-150	1.997
184	200	-150	1.600
185	250	-150	1.234
186	300	-150	0.911
187	350	-150	0.746
188	-450	-200	0.727
189	-400	-200	1.082
190	-350	-200	1.338
191	-300	-200	1.623
192	-250	-200	2.021
193	-200	-200	2.313
194	-150	-200	2.463
195	-100	-200	2.775
196	-50	-200	3.374
197	0	-200	3.189
198	50	-200	2.405

Aufpunkt		y [m]	Häufigkeit
199	100	-200	1.630
200	150	-200	1.365
201	200	-200	1.122
202	250	-200	0.954
203	300	-200	0.747
204	350	-200	0.624
205	-450	-250	0.779
206	-400	-250	1.055
207	-350	-250	1.253
208	-300	-250	1.427
209	-250	-250	1.722
210	-200	-250	1.971
211	-150	-250	2.272
212	-100	-250	2.482
213	-50	-250	2.606
214	0	-250	2.316
215	50	-250	1.848
216	100	-250	1.389
217	150	-250	1.070
218	200	-250	0.877
219	250	-250	0.720
220	300	-250	0.589
221	350	-250	0.495
222	-450	-300	0.661
223	-400	-300	0.849
224	-350	-300	1.063
225	-300	-300	1.206
226	-250	-300	1.393
227	-200	-300	1.602
228	-150	-300	1.809
229	-100	-300	2.079
230	-50	-300	2.121
231	0	-300	1.969
232	50	-300	1.560
233	100	-300	1.186
234	150	-300	0.866
235	200	-300	0.678
236	250	-300	0.560
237	300	-300	0.471
238	350	-300	0.400

Aufpunkt	x [m]	y [m]	Häufigkeit
239	-450	-350	0.567
240	-400	-350	0.656
241	-350	-350	0.835
242	-300	-350	1.033
243	-250	-350	1.204
244	-200	-350	1.377
245	-150	-350	1.596
246	-100	-350	1.698
247	-50	-350	1.680
248	0	-350	1.536
249	50	-350	1.290
250	100	-350	1.024
251	150	-350	0.789
252	200	-350	0.592
253	250	-350	0.460
254	300	-350	0.381
255	350	-350	0.299
256	-450	-400	0.369
257	-400	-400	0.543
258	-350	-400	0.637
259	-300	-400	0.811
260	-250	-400	1.041
261	-200	-400	1.168
262	-150	-400	1.272
263	-100	-400	1.373
264	-50	-400	1.474
265	0	-400	1.286
266	50	-400	1.107
267	100	-400	0.847
268	150	-400	0.661
269	200	-400	0.512
270	250	-400	0.412
271	300	-400	0.295
272	350	-400	0.211
273	-450	-450	0.228
274	-400	-450	0.357
275	-350	-450	0.536
276	-300	-450	0.631
277	-250	-450	0.792
278	-200	-450	0.829

Aufpunkt	x [m]	y [m]	Häufigkeit
279	-150	-450	0.989
280	-100	-450	1.058
281	-50	-450	1.094
282	0	-450	1.003
283	50	-450	0.886
284	100	-450	0.676
285	150	-450	0.541
286	200	-450	0.385
287	250	-450	0.318
288	300	-450	0.224
289	350	-450	0.183
290	450	-500	0.164
291	-400	-500	0.219
292	-350	-500	0.381
293	-300	-500	0.436
294	-250	-500	0.536
295	-200	-500	0.680
296	-150	-500	0.714
297	-100	-500	0.817
298	-50	-500	0.722
299	0	-500	0.647
300	50	-500	0.589
301	100	-500	0.549
302	150	-500	0.413
303	200	-500	0.320
304	250	-500	0.221
305	300	-500	0.157
306	350	-500	0.090
307	-450	-550	0.000
308	-400	-550	0.055
309	-350	-550	0.163
310	-300	-550	0.217
311	-250	-550	0.362
312	-200	-550	0.426
313	-150	-550	0.531
314	-100	-550	0.607
315	-50	-550	0.556
316	0	-550	0.540
317	50	-550	0.461
318	100	-550	0.420

Aufpunkt	x [m]	y [m]	Häufigkeit
319	150	-550	0.313
320	200	-550	0.216
321	250	-550	0.159
322	300	-550	0.063
323	350	-550	0.047
324	-450	-600	0.000
325	-400	-600	0.000
326	-350	-600	0.000
327	-300	-600	0.108
328	-250	-600	0.222
329	-200	-600	0.224
330	-150	-600	0.313
331	-100	-600	0.374
332	-50	-600	0.404
333	0	-600	0.330
334	50	-600	0.339
335	100	-600	0.255
336	150	-600	0.186
337	200	-600	0.100
338	250	-600	0.091
339	300	-600	0.032
340	350	-600	0.000
341	-450	-650	0.000
342	-400	-650	0.000
343	-350	-650	0.000
344	-300	-650	0.000
345	-250	-650	0.000
346	-200	-650	0.112
347	-150	-650	0.114
348	-100	-650	0.172
349	-50	-650	0.157
350	0	-650	0.149
351	50	-650	0.137
352	100	-650	0.113
353	150	-650	0.076
354	200	-650	0.050
355	250	-650	0.000
356	300	-650	0.000
357	350	-650	0.000

Emissionsdaten Tierhaltung

Quelle: Oldenburg; KTBL-Schrift 333; Geruchs- und Ammoniak-Emissionen aus der Tierhaltung S. 122

- J	Geruchs- Emission GEs-1GV-1	Emission	NH ₃ - Emission gh-1GV-1	Luftrate m³h¹Q~1	Umbauter Raum m³/GV
Hühnerhaltung Schweinehaltung Rinderhaltung		1.599 604 290		1.040 435 268	73 36 29
Legehennen Käfighaltung Bodenhaltung	A THE COLOR OF THE	1.675 1.397		1.317	
Abferkelstall strohlos mit Einstreu		•			39 54
Schweinemast strohlos Trockenfütterun Flüssigfütterun		676 494	1,76 1,68	408 416	30 . 29
Teilspaltenbode Vollspaltenbode		560 642	1,35 2,38	411 423	30 23

^{*)} Jeweils arithmetisches Mittel aus allen vorhandenen Meßwerten des entsprechenden Stallsystems.

7.3 Geruchsemissionen verschiedener Stallsysteme

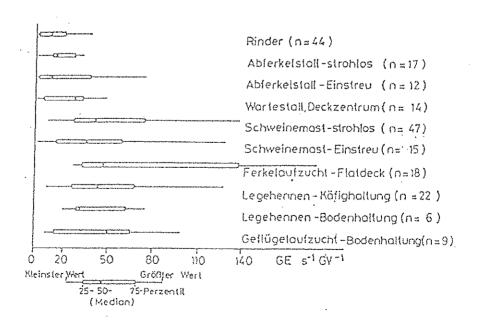


Abb. 26: Verteilung der Geruchsemissionen innerhalb der Stollgruppen bei Jahresdurchschnittstemperatur (Zuluft)

Richters & Hüls - Erhardstraße 9 - 48683 Ahaus

Projektbau Düsselthal Entwicklungsgesellschaft mbH z. H. Herrn Berkenbusch Pastor-Vömel-Str. 20b

42781 Haan

Elugary 4,7.02

Lärmgutachten Geruchsgutachten Genehmigungsverfahren Altlastuntersuchungen

Tel. 0 25 61 - 4 30 03 Tel. 0 25 61 - 4 30 04 Fax 0 25 61 - 4 30 05

7 GX 0 20 01 4 00 00

richtersundhuels@t-online.de

1.7.2002

Ergänzende Stellungnahme zu Geruchsgutachten 060701

Sehr geehrter Herr Berkenbusch,

anbei erhalten Sie unsere ergänzende Stellungnahme zu o. g. Geruchsgutachten.

Das o. g. Geruchsgutachten geht davon aus, dass auf dem Hof Demmer 11.500 Legehennen in Käfigen gehalten werden. Bei einer Abluftführung nach dem Stand der Technik über 4 Abluftschächte treten im geplanten Wohngebiet an maximal 2 % der Jahresstunden Gerüche auf. Im Hinblick auf diese Immissionen ist die Legehennenhaltung auf dem Hofe Demmer nach der Geruchsimmissionsrichtlinie als irrelevant zu bezeichnen. Eine Erweiterung der Legehennenhaltung auf dem Hofe Demmer ist daher im Hinblick auf das Plangebiet jederzeit realisierbar. Da die derzeitige Geruchswahrnehmungshäufigkeit an den östlich des Hofes Demmer gelegenen Wohnhäusern bis zu 5 % der Jahresstunden beträgt, ist hier eine Aufstockung der Viehhaltung in erster Linie durch diese näher gelegenen Häuser eingeschränkt.

Hinsichtlich der Geruchsemissionen ist kein Unterschied zwischen Käfig- und Bodenhaltung festzustellen. Bei gleicher Stallfläche können jedoch in Bodenhaltung weniger Tiere gehalten werden. Legehennenfreilandhaltung ist bei gleicher Tierzahl mit weniger Geruchsemissionen verbunden.

An den von uns im Gutachten 060701 getroffenen Aussagen zu den Geruchsimmissionen im Bebauungsplangebiet ändert sich daher prinzipiell nichts. Erweiterungen sind daher aus dieser Sicht (egal bei welcher Aufstallungsform) ohne weiteres möglich.

Wir hoffen, Ihnen mit diesen Aussagen weitergeholfen zu haben und verbleiben mit freundlichen Grüßen

Richters & Hüls

Ingenieurbüro für Abfallwirtschaft und Immissionsschutz

Dipl.-Ing. W. Richters